
LA-UR-18-27195
Approved for public release; distribution is unlimited.

Title: Performance Study and Optimization of FleCSALE using Tabular Equation
of State

Author(s): Payne, Patrick Charles
Stegmeier, Nicholas William
Lakshmiranganatha, Sumathi
Akhmetova, Dana
Mukherjee, Diptajyoti
Ouellet, Frederick

Intended for: General Presentation

Issued: 2018-07-31

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Instead of the

screen while your

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Performance Study and Optimization of
FleCSALE using Tabular Equation of State

Dana Akhmetova
Sumathi Lakshmiranganatha

Diptajyoti Mukherjee
Frederick Ouellet

Patrick Payne
Nicholas Stegmeier

Objective

Explore new numerical and
computer science approaches to
efficiently use EOSPAC within the
context of FleCSALE and reduce
the cost of equation of state (EOS)
table queries

Motivation

7/27/18 | 4Los Alamos National Laboratory

• Tabular equation of state (EOS) data are constantly queried by
physics codes

• Queries can occur several times per time-step at each
computational cell for each material that exists at a query
location

• Queries regularly involve expensive interpolations of
thermodynamic quantities

• Thermodynamic quantities are necessary for computation of
additional physical quantities for the simulations

• Reducing the cost of tabular EOS queries provides an overall
reduction in the solution time for many complex physics
problems

FleCSALE, FleCSI, + EOSPAC

7/27/18 | 5Los Alamos National Laboratory

• FleCSALE
– Continuum dynamics code, supports multi-phase fluids and tabular equation of

state (EOS)
– 2D/3D cell-centered Eulerian and Lagrangian solver
– 3D FEM Lagrangian solver

• FleCSI
– Compile-time configurable framework designed to support multi-physics

application development
– Supports an MPI and Legion backend
– Primary structure is hierarchical, exposing low-level, mid-level, and high-level

interfaces that are appropriate for different sets of users
• EOSPAC

– Collection of interface routines
– Used to access the SESAME data library
– Can perform various data adjustments and interpolations on the SESAME data
– Inherently serial execution

Triple Point Problem

7/27/18 | 6Los Alamos National Laboratory

• Fluids simulation involving three
different materials
– All materials are ideal gases

• Problem decomposed into four regions
– Left-most and bottom regions: two different

materials at the same density
– Top region: third material at low density
– Middle region: mixed composition & density

• All materials can use tabular EOS data
for the simulations.

Initial Conditions

Bottlenecks and Strategies

7/27/18 | 7Los Alamos National Laboratory

• Initial Bottlenecks:
– Ghost Data Creation
– Material Grouping
– MPI Communication
– Interpolation

• Explored Strategies:
– Software Engineering
– MPI Communication Optimization --- sparse data
– Hybrid Programming --- OpenMP
– GPU Porting with different memory schemes
– Machine Learning

Software Engineering

7/27/18 | 8Los Alamos National Laboratory

FleCSALE/EOSPAC Linking

7/27/18 | 9Los Alamos National Laboratory

• Linking Optimizations:
– Enabled the inversion/storing of modified Sesame tables at the initialization of FleCSALE

– Reformatted FleCSALE to send common material cells to EOSPAC as groups

Sorting in EOSPAC’s Search Algorithm

7/27/18 | 10Los Alamos National Laboratory

• Before interpolations, EOSPAC places a stencil on the material table à eos_srchdf()

• Approach uses an input to eos_srchdf() which gives the first point for the table sweep

• The indexes of the array of points to be interpolated are sorted before sweeping

• Two versions:

– Embedded in EOSPAC

– Inside of FleCSALE

Problem-Dependent Performance

7/27/18 | 11Los Alamos National Laboratory

• There is potential for enhanced performance from the index sorting
which is problem dependent

• Example: CDSS Scaling Problem (Triple Point)
– Simulation density range = 0 to 3.5
– Sesame table range = 0 to ~61,000
– We only use roughly 20% of the table for this problem

• Problems with larger property variations are more likely to obtain better
performance with the sorting approach

Sparse Data Optimization

7/27/18 | 12Los Alamos National Laboratory

Motivation

7/27/18 | 13Los Alamos National Laboratory

Sparse Data Optimization

7/27/18 | 14Los Alamos National Laboratory

• Weak scaling graph shows huge
communication latency

• MPI backend in FleCSI uses One
Sided Communication

• Tracing the application showed
~74% of the code was MPI
communication calls

• MPI_Win_create calls was the
most expensive with ~28% of the
execution time

58.6 sec (28.1 %)

32.4 sec (15.5 %)

21.2 sec (10.2 %)

19.4 sec (9.31 %)

7.08 sec (3.39 %)

MPI_Win_create

MPI_Win_complete

MPI_Get

MPI_Win_free

MPI_Isend

Sparse Data Optimization –Copy removal

7/27/18 | 15Los Alamos National Laboratory

• Unnecessary copies of data were
eliminated

• Shared window creation was done
only once with reduction of
MPI_Win_create calls

• MPI Communications takes about
~57%

• Performance Improvement
• Single node ~20%
• Multi node ~40%

41.6 sec (39.4 %)

11.7 sec(11.1 %)

3.89 sec(3.68 %)

1.09 sec (1.04 %)

0.598 sec (0.566 %)

MPI_Win_complete

MPI_Get

MPI_Win_wait

MPI_Win_post

MPI_Win_create

Sparse Data Optimization- MPI_Datatype

7/27/18 | 16Los Alamos National Laboratory

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

• MPI_Datatype is used for shared
ghost cells to treat as a single
message

• MPI_Get and MPI_Win_complete
calls reduced

• MPI Communication takes about
43%

• Performance Improvement
• Single node ~25%
• Multi node ~60%

Shared ghost cells

MPI_Get

MPI_Win_post

MPI_Win_create

MPI_Win_wait

MPI_Win_complete 25.2 sec(31.6 %)

3.64 sec (4.57 %)

2.27 sec (2.85 %)

1.11 sec (1.39 %)

0.46 sec (0.577%)

Performance Analysis

7/27/18 | 17Los Alamos National Laboratory

• Overall performance improvement ~80%
• Speedup of ~5x
• MPI_Win_complete is still expensive

Hybrid programming with OpenMP

7/27/18 | 19Los Alamos National Laboratory

Adding OpenMP in FleCSALE

7/27/18 | 20Los Alamos National Laboratory

• Fork/join model:

• Two OpenMP approaches were investigated:
– tasking;
– for-loop work-sharing.

Adding OpenMP in Flecsale

7/27/18 | 21Los Alamos National Laboratory

• Changes done in: maire_hydro/tasks.h
• Mesh: triple_200x81.g
• Flags: -g -O3 -fopenmp
• Compilers: gcc/7.3.0 and intel/18.0.2
• MPI implementation: mpich/3.2.1-intel_18.0.2
• Platform: Intel Haswell --- E5-2698 v3

– Sockets --- 2
– Cores per Socket --- 16
– NUMA Domains --- 2

Performance results

7/27/18 | 22Los Alamos National Laboratory

GPU Porting for EOSPAC

7/27/18 | 23Los Alamos National Laboratory

Motivation

7/27/18 | 24Los Alamos National Laboratory

• FleCSALE queries EOSPAC for
interpolated EOS values.

• Profiling revealed Interpolation
was costliest part of FleCSALE,
~15% of simulation.

• Can be parallelized easily.
• GPUs are next generation

hardware for intensive
computations.

• Interpolation is not memory
intensive.

Device code
Interpolation schemes

(Birational, Bilinear etc.)

Host code

Loading EOS
data

M
em

cpy
M

em
cpy

Host code

Interpolated
EOS values

Methodology

7/27/18 | 25Los Alamos National Laboratory

• Wrapper around Birational
Interpolation kernel and Bilinear
Interpolation kernel that can be
called inside EOSPAC.

• No changes to the public
interfaces. Only need a separate
library compilation.

• Interpolation algorithms are
called multiple times within a
single FleCSALE time-step.

• No Memcpy is necessary for the
interpolated values.

Host memory
Mapped, pinnedUnpinned

EOS Tables Values to
interpolate

Device memory
Global Memory

Ghost Data

Bilinear Interpolation

7/27/18 | 26Los Alamos National Laboratory

• Can be executed by the
hardware using texture
memory.

• Requires the use of 32 bit,
single precision data types

• Use of single precision types
provides an improved
processing throughput of at
least 2x, depending on
architecture

• Texture memory allows us to
store tables in the unified L1
cache/texture cache

Device Memory

Host Memory

Texture Memory

Ghost Data

Global Memory

Results

Unpinned Mapped, pinned
Values to

Interpolate ResultsGhost Data

Speed-up from CUDA

7/27/18 | 28Los Alamos National Laboratory

Speed-up from CUDA

7/27/18 | 29Los Alamos National Laboratory

Speed-up from CUDA

7/27/18 | 30Los Alamos National Laboratory

Speed-up from CUDA

7/27/18 | 31Los Alamos National Laboratory

Speed-up from CUDA

7/27/18 | 32Los Alamos National Laboratory

Accuracy for Sesame 3720

7/27/18 | 34Los Alamos National Laboratory

Accuracy for Sesame 3720

7/27/18 | 35Los Alamos National Laboratory

Accuracy for Sesame 3720

7/27/18 | 36Los Alamos National Laboratory

Machine Learning for EOS Interpolation

7/27/18 | 37Los Alamos National Laboratory

Machine Learning for EOS Interpolation

7/27/18 | 38Los Alamos National Laboratory

Goal: Replace calls to EOSPAC with ML regression.

Process:
1. Generate a training dataset using EOSPAC

2. Train the model

3. Characterize the error (compared to EOSPAC)

4. Integrate with FleCSALE

ML Models:
• Kernel Ridge Regression (KRR)

• Random Forest (RF)

Model Framework

7/27/18 | 39Los Alamos National Laboratory

Nomenclature: density (d), internal energy (ie), pressure (p), temperature (T),
soundspeed (ss)

Pressure model
• F(d,ie) = p

Temperature model
• F(d,ie,p)=T

Soundspeed model
• F(d,ie,p,T) = ss

F("⃗) =#⃗

features

labels

Random forest vs. Kernel Ridge Regression
• RF is more accurate but much slower
• RF takes ~3GB
• KRR takes ~1.5KB

Machine Learning Error Analysis

7/27/18 | 40Los Alamos National Laboratory

On-node Performance Comparison

7/27/18 | 44Los Alamos National Laboratory

Machine Learning Take-aways

7/27/18 | 45Los Alamos National Laboratory

• Accuracy and speed tradeoff

• Even with low accuracy, performance is questionable (in this case)

• Other ML models and C++ libraries exist

Final Results

7/27/18 | 46Los Alamos National Laboratory

Results

7/27/18 | 47Los Alamos National Laboratory

• Proper selection of integration options and algorithms within EOSPAC
provide a noticeable speed-up in FleCSALE

• Sparse data optimization with MPI backend shows a significant
improvement about ~5x speed-up

• Initial CUDA results are promising and show a considerable speedup.
However, integration with FleCSALE and host code optimizations are
still required

• Initial machine learning integration did not increase performance, but
other models and libraries could offer improvements

Future Pursuits

7/27/18 | 48Los Alamos National Laboratory

• Add additional host code optimizations that allow for additional GPU
performance improvements

• Take advantage of additional memory management schemes to further
reduce the memory latency involved with GPU usage

• Study the performance of MPI and Legion backends, with and without
the additional optimizations

• Utilize different parallel programming models within FleCSALE, (e.g.,
MPI + CUDA)

• Explore other types of Target Synchronization techniques for MPI
communication like MPI_Lock, MPI_Unlock.

• Investigate other machine learning libraries (e.g., TensorFlow, MLPACK)

Acknowledgements

7/27/18 | 49Los Alamos National Laboratory

Thank you to the Co-Design Mentors,
FleCSI Development Team, CCS-7, ISTI,
ASC, & LANL

